
Embedding Based Models – Lecture 17.2

Embedding-based models build embeddings for entities and
relations to predict tuples.

Simplest case: relations between two entities.
E.g., predicting the rating for a person on a movie
(collaborative filtering).

Knowledge graphs: predict subject-verb-object triples.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 1 / 14

Embedding Based Models – Lecture 17.2

Embedding-based models build embeddings for entities and
relations to predict tuples.

Simplest case: relations between two entities.
E.g., predicting the rating for a person on a movie
(collaborative filtering).

Knowledge graphs: predict subject-verb-object triples.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 1 / 14

Embedding Based Models – Lecture 17.2

Embedding-based models build embeddings for entities and
relations to predict tuples.

Simplest case: relations between two entities.
E.g., predicting the rating for a person on a movie
(collaborative filtering).

Knowledge graphs: predict subject-verb-object triples.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 1 / 14

Learning a relation between two entities

A relation between users and items (movies). From Movielens:

User Item Rating Timestamp

196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
244 51 2 880606923
.

Netflix: 500K users, 17k movies, 100M ratings (withdrawn).

Movielens: multiple datasets from 100K to 25M ratings,
with links to IMDB, plus some user properties

r̂ui = predicted rating of user u on item i
Es = set of (u, i , r) tuples in the training set (ignoring timestamp)
Minimize sum squares error:∑

(u,i ,r)∈Es

(r̂ui − r)2

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 2 / 14

Learning a relation between two entities

A relation between users and items (movies). From Movielens:

User Item Rating Timestamp

196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
244 51 2 880606923
.

Netflix: 500K users, 17k movies, 100M ratings (withdrawn).

Movielens: multiple datasets from 100K to 25M ratings,
with links to IMDB, plus some user properties

r̂ui = predicted rating of user u on item i
Es = set of (u, i , r) tuples in the training set (ignoring timestamp)
Minimize sum squares error:∑

(u,i ,r)∈Es

(r̂ui − r)2

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 2 / 14

Learning Relational Models with Latent Variables

Predict same for all ratings: r̂ui = µ

Adjust for each user and item: r̂ui = µ+ b1[u] + b2[i]
Question: b1[u] could be negative even though all ratings of u
are higher that average. How?

Question: How can this be used to personalize
recommendations?

One latent feature: fi for each item and gu for each user

r̂ui = µ+ b1[u] + b2[i] + f1[u] ∗ f2[i]

▶ Positive f1[u] forms a soft clustering of users.
▶ Positive f2[i] forms a soft clustering of items.
▶ How do these clusterings interact?
▶ What about negative values?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 3 / 14

Learning Relational Models with Latent Variables

Predict same for all ratings: r̂ui = µ

Adjust for each user and item: r̂ui = µ+ b1[u] + b2[i]

Question: b1[u] could be negative even though all ratings of u
are higher that average. How?

Question: How can this be used to personalize
recommendations?

One latent feature: fi for each item and gu for each user

r̂ui = µ+ b1[u] + b2[i] + f1[u] ∗ f2[i]

▶ Positive f1[u] forms a soft clustering of users.
▶ Positive f2[i] forms a soft clustering of items.
▶ How do these clusterings interact?
▶ What about negative values?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 3 / 14

Learning Relational Models with Latent Variables

Predict same for all ratings: r̂ui = µ

Adjust for each user and item: r̂ui = µ+ b1[u] + b2[i]
Question: b1[u] could be negative even though all ratings of u
are higher that average. How?

Question: How can this be used to personalize
recommendations?

One latent feature: fi for each item and gu for each user

r̂ui = µ+ b1[u] + b2[i] + f1[u] ∗ f2[i]

▶ Positive f1[u] forms a soft clustering of users.
▶ Positive f2[i] forms a soft clustering of items.
▶ How do these clusterings interact?
▶ What about negative values?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 3 / 14

Learning Relational Models with Latent Variables

Predict same for all ratings: r̂ui = µ

Adjust for each user and item: r̂ui = µ+ b1[u] + b2[i]
Question: b1[u] could be negative even though all ratings of u
are higher that average. How?

Question: How can this be used to personalize
recommendations?

One latent feature: fi for each item and gu for each user

r̂ui = µ+ b1[u] + b2[i] + f1[u] ∗ f2[i]

▶ Positive f1[u] forms a soft clustering of users.
▶ Positive f2[i] forms a soft clustering of items.
▶ How do these clusterings interact?
▶ What about negative values?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 3 / 14

Learning Relational Models with Latent Variables

Predict same for all ratings: r̂ui = µ

Adjust for each user and item: r̂ui = µ+ b1[u] + b2[i]
Question: b1[u] could be negative even though all ratings of u
are higher that average. How?

Question: How can this be used to personalize
recommendations?

One latent feature: fi for each item and gu for each user

r̂ui = µ+ b1[u] + b2[i] + f1[u] ∗ f2[i]

▶ Positive f1[u] forms a soft clustering of users.
▶ Positive f2[i] forms a soft clustering of items.
▶ How do these clusterings interact?
▶ What about negative values?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 3 / 14

Learning Relational Models with Latent Variables

Predict same for all ratings: r̂ui = µ

Adjust for each user and item: r̂ui = µ+ b1[u] + b2[i]
Question: b1[u] could be negative even though all ratings of u
are higher that average. How?

Question: How can this be used to personalize
recommendations?

One latent feature: fi for each item and gu for each user

r̂ui = µ+ b1[u] + b2[i] + f1[u] ∗ f2[i]

▶ Positive f1[u] forms a soft clustering of users.

▶ Positive f2[i] forms a soft clustering of items.
▶ How do these clusterings interact?
▶ What about negative values?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 3 / 14

Learning Relational Models with Latent Variables

Predict same for all ratings: r̂ui = µ

Adjust for each user and item: r̂ui = µ+ b1[u] + b2[i]
Question: b1[u] could be negative even though all ratings of u
are higher that average. How?

Question: How can this be used to personalize
recommendations?

One latent feature: fi for each item and gu for each user

r̂ui = µ+ b1[u] + b2[i] + f1[u] ∗ f2[i]

▶ Positive f1[u] forms a soft clustering of users.
▶ Positive f2[i] forms a soft clustering of items.

▶ How do these clusterings interact?
▶ What about negative values?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 3 / 14

Learning Relational Models with Latent Variables

Predict same for all ratings: r̂ui = µ

Adjust for each user and item: r̂ui = µ+ b1[u] + b2[i]
Question: b1[u] could be negative even though all ratings of u
are higher that average. How?

Question: How can this be used to personalize
recommendations?

One latent feature: fi for each item and gu for each user

r̂ui = µ+ b1[u] + b2[i] + f1[u] ∗ f2[i]

▶ Positive f1[u] forms a soft clustering of users.
▶ Positive f2[i] forms a soft clustering of items.
▶ How do these clusterings interact?

▶ What about negative values?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 3 / 14

Learning Relational Models with Latent Variables

Predict same for all ratings: r̂ui = µ

Adjust for each user and item: r̂ui = µ+ b1[u] + b2[i]
Question: b1[u] could be negative even though all ratings of u
are higher that average. How?

Question: How can this be used to personalize
recommendations?

One latent feature: fi for each item and gu for each user

r̂ui = µ+ b1[u] + b2[i] + f1[u] ∗ f2[i]

▶ Positive f1[u] forms a soft clustering of users.
▶ Positive f2[i] forms a soft clustering of items.
▶ How do these clusterings interact?
▶ What about negative values?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 3 / 14

What is being learned? (Single latent feature)

for each (u, i , r): r is plotted at point (f1[u], f2[i]).

aipython: relnCollFilt.py

What pattern would you expect?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 4 / 14

What is being learned? (Single latent feature)

for each (u, i , r): r is plotted at point (f1[u], f2[i]).

aipython: relnCollFilt.py

What pattern would you expect?
© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 4 / 14

Learning Relational Models with Multiple Latent Properties

k latent features (Python notation):

r̂ui = µ+ b1[u] + b2[i] +
∑
f

E1[u][f] ∗ E2[i][f]

E1[u] is the user embedding, a vector of numbers.
E2[i] is the item embedding, a vector of numbers.

Regularize parameters except µ.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 5 / 14

Learning Relational Models with Multiple Latent Properties

k latent features (Python notation):

r̂ui = µ+ b1[u] + b2[i] +
∑
f

E1[u][f] ∗ E2[i][f]

E1[u] is the user embedding, a vector of numbers.

E2[i] is the item embedding, a vector of numbers.

Regularize parameters except µ.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 5 / 14

Learning Relational Models with Multiple Latent Properties

k latent features (Python notation):

r̂ui = µ+ b1[u] + b2[i] +
∑
f

E1[u][f] ∗ E2[i][f]

E1[u] is the user embedding, a vector of numbers.
E2[i] is the item embedding, a vector of numbers.

Regularize parameters except µ.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 5 / 14

Learning Relational Models with Multiple Latent Properties

k latent features (Python notation):

r̂ui = µ+ b1[u] + b2[i] +
∑
f

E1[u][f] ∗ E2[i][f]

E1[u] is the user embedding, a vector of numbers.
E2[i] is the item embedding, a vector of numbers.

Regularize parameters except

µ.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 5 / 14

Learning Relational Models with Multiple Latent Properties

k latent features (Python notation):

r̂ui = µ+ b1[u] + b2[i] +
∑
f

E1[u][f] ∗ E2[i][f]

E1[u] is the user embedding, a vector of numbers.
E2[i] is the item embedding, a vector of numbers.

Regularize parameters except µ.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 5 / 14

Regularizing

L2 regularization, minimize: ∑
(u,i ,r)∈Es

(r̂ui − r)2

+ λ
∑

parameter p

p2

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 6 / 14

L2 regularization

Minimize: ∑
(u,i ,r)∈Es

(µ+ b1[u] + b2[i] +
∑
k

E1[u][f] ∗ E2[i][f]− r)2


+ λ

(∑
i

(b1[u]
2 +

∑
f

E1[u][f]
2) +

∑
u

(b2[i]
2 +

∑
f

E2[i][f]
2)

)

where λ is a regularization parameter.

To find minimizing parameters:

Gradient descent

Iterative least squares: fix one of E1 and E2; the problem is
ridge regression in the other.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 7 / 14

L2 regularization

Minimize: ∑
(u,i ,r)∈Es

(µ+ b1[u] + b2[i] +
∑
k

E1[u][f] ∗ E2[i][f]− r)2


+ λ

(∑
i

(b1[u]
2 +

∑
f

E1[u][f]
2) +

∑
u

(b2[i]
2 +

∑
f

E2[i][f]
2)

)

where λ is a regularization parameter.

To find minimizing parameters:

Gradient descent

Iterative least squares: fix one of E1 and E2; the problem is
ridge regression in the other.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 7 / 14

µ := average rating
assign E1[u][f], E2[i][f] randomly and assign b1[i], b2[u] arbitrarily
repeat:

for each (u, i , r) ∈ Es:
e := µ+ b1[i] + b2[u] +

∑
k E1[u][f] ∗ E2[i][f]− r

b1[i] := b1[i]− η ∗ e
b2[u] := b2[u]− η ∗ e
for each feature f :

E1[u][f] := E1[u][f]− η ∗ e ∗ E2[i][f]
E2[i][f] := E2[i][f]− η ∗ e ∗ E1[u][f]

for each item i :
b1[i] := b1[i]− η ∗ λ ∗ b1[i]
for each feature f :

E1[u][f] := E1[u][f]− η ∗ λ ∗ E1[u][f]
for each user u:

b2[u] := b2[u]− η ∗ λ ∗ b2[u]
for each feature k:

E2[i][f] := E2[i][f]− η ∗ λ ∗ E2[i][f]

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 8 / 14

µ := average rating
assign E1[u][f], E2[i][f] randomly and assign b1[i], b2[u] arbitrarily
repeat:

for each (u, i , r) ∈ Es:
e := µ+ b1[i] + b2[u] +

∑
k E1[u][f] ∗ E2[i][f]− r

b1[i] := b1[i]− η ∗ e
b2[u] := b2[u]− η ∗ e
for each feature f :

E1[u][f] := E1[u][f]− η ∗ e ∗ E2[i][f]
E2[i][f] := E2[i][f]− η ∗ e ∗ E1[u][f]

for each item i :
b1[i] := b1[i]− η ∗ λ ∗ b1[i]
for each feature f :

E1[u][f] := E1[u][f]− η ∗ λ ∗ E1[u][f]
for each user u:

b2[u] := b2[u]− η ∗ λ ∗ b2[u]
for each feature k:

E2[i][f] := E2[i][f]− η ∗ λ ∗ E2[i][f]

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 8 / 14

Variations

What is you want to predict Boolean rating > 3?

▶ Use sigmoid.
▶ What should we minimize?
▶ How does the algorithm change?

What if we want to predict rated , where rated(u, i) is true if
(u, i , r) ∈ Es for some r?
▶ There are no negative examples!
▶ Use k random examples for each positve example!

but the average probability is 1/k, which is not derived from
the data.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 9 / 14

Variations

What is you want to predict Boolean rating > 3?
▶ Use sigmoid.

▶ What should we minimize?
▶ How does the algorithm change?

What if we want to predict rated , where rated(u, i) is true if
(u, i , r) ∈ Es for some r?
▶ There are no negative examples!
▶ Use k random examples for each positve example!

but the average probability is 1/k, which is not derived from
the data.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 9 / 14

Variations

What is you want to predict Boolean rating > 3?
▶ Use sigmoid.
▶ What should we minimize?

▶ How does the algorithm change?

What if we want to predict rated , where rated(u, i) is true if
(u, i , r) ∈ Es for some r?
▶ There are no negative examples!
▶ Use k random examples for each positve example!

but the average probability is 1/k, which is not derived from
the data.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 9 / 14

Variations

What is you want to predict Boolean rating > 3?
▶ Use sigmoid.
▶ What should we minimize?
▶ How does the algorithm change?

What if we want to predict rated , where rated(u, i) is true if
(u, i , r) ∈ Es for some r?
▶ There are no negative examples!
▶ Use k random examples for each positve example!

but the average probability is 1/k, which is not derived from
the data.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 9 / 14

Variations

What is you want to predict Boolean rating > 3?
▶ Use sigmoid.
▶ What should we minimize?
▶ How does the algorithm change?

What if we want to predict rated , where rated(u, i) is true if
(u, i , r) ∈ Es for some r?

▶ There are no negative examples!
▶ Use k random examples for each positve example!

but the average probability is 1/k, which is not derived from
the data.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 9 / 14

Variations

What is you want to predict Boolean rating > 3?
▶ Use sigmoid.
▶ What should we minimize?
▶ How does the algorithm change?

What if we want to predict rated , where rated(u, i) is true if
(u, i , r) ∈ Es for some r?
▶ There are no negative examples!

▶ Use k random examples for each positve example!
but the average probability is 1/k, which is not derived from
the data.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 9 / 14

Variations

What is you want to predict Boolean rating > 3?
▶ Use sigmoid.
▶ What should we minimize?
▶ How does the algorithm change?

What if we want to predict rated , where rated(u, i) is true if
(u, i , r) ∈ Es for some r?
▶ There are no negative examples!
▶ Use k random examples for each positve example!

but

the average probability is 1/k, which is not derived from
the data.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 9 / 14

Variations

What is you want to predict Boolean rating > 3?
▶ Use sigmoid.
▶ What should we minimize?
▶ How does the algorithm change?

What if we want to predict rated , where rated(u, i) is true if
(u, i , r) ∈ Es for some r?
▶ There are no negative examples!
▶ Use k random examples for each positve example!

but the average probability is

1/k, which is not derived from
the data.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 9 / 14

Variations

What is you want to predict Boolean rating > 3?
▶ Use sigmoid.
▶ What should we minimize?
▶ How does the algorithm change?

What if we want to predict rated , where rated(u, i) is true if
(u, i , r) ∈ Es for some r?
▶ There are no negative examples!
▶ Use k random examples for each positve example!

but the average probability is 1/k , which is not derived from
the data.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 9 / 14

Knowledge Graphs and Triples

A knowledge graph is defined in term of triples of the form
(s, r , o), with subject s, relation (verb) r , and object o

The extension of matrix factorization to triples is polyadic
decomposition:

p̂((s, r , o)) = sigmoid(µ+ b1[s] + b2[r] + b3[o]∑
f

E1[s][f] ∗ E2[r][f] ∗ E3[o][f])

▶ a global bias µ
▶ two biases for each entity e: b1[e] used when e is in the first

position and b3[e], for when e in third position
▶ a bias for each relation r , namely b2[r]
▶ matrixes E1 and E3

E1[e] is subject embedding for entity e −→ latent properties
E3[e], is object embedding entity e

▶ matrix E2, where E2[r] is relation embedding for relation r .

All embeddings E1[e], E2[r] and E3[e] are the same length.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 10 / 14

Knowledge Graphs and Triples

A knowledge graph is defined in term of triples of the form
(s, r , o), with subject s, relation (verb) r , and object o

The extension of matrix factorization to triples is polyadic
decomposition:

p̂((s, r , o)) = sigmoid(µ+ b1[s] + b2[r] + b3[o]∑
f

E1[s][f] ∗ E2[r][f] ∗ E3[o][f])

▶ a global bias µ
▶ two biases for each entity e: b1[e] used when e is in the first

position and b3[e], for when e in third position
▶ a bias for each relation r , namely b2[r]
▶ matrixes E1 and E3

E1[e] is subject embedding for entity e −→ latent properties
E3[e], is object embedding entity e

▶ matrix E2, where E2[r] is relation embedding for relation r .

All embeddings E1[e], E2[r] and E3[e] are the same length.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 10 / 14

Knowledge Graphs and Triples

A knowledge graph is defined in term of triples of the form
(s, r , o), with subject s, relation (verb) r , and object o

The extension of matrix factorization to triples is polyadic
decomposition:

p̂((s, r , o)) = sigmoid(µ+ b1[s] + b2[r] + b3[o]∑
f

E1[s][f] ∗ E2[r][f] ∗ E3[o][f])

▶ a global bias µ

▶ two biases for each entity e: b1[e] used when e is in the first
position and b3[e], for when e in third position

▶ a bias for each relation r , namely b2[r]
▶ matrixes E1 and E3

E1[e] is subject embedding for entity e −→ latent properties
E3[e], is object embedding entity e

▶ matrix E2, where E2[r] is relation embedding for relation r .

All embeddings E1[e], E2[r] and E3[e] are the same length.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 10 / 14

Knowledge Graphs and Triples

A knowledge graph is defined in term of triples of the form
(s, r , o), with subject s, relation (verb) r , and object o

The extension of matrix factorization to triples is polyadic
decomposition:

p̂((s, r , o)) = sigmoid(µ+ b1[s] + b2[r] + b3[o]∑
f

E1[s][f] ∗ E2[r][f] ∗ E3[o][f])

▶ a global bias µ
▶ two biases for each entity e: b1[e] used when e is in the first

position and b3[e], for when e in third position

▶ a bias for each relation r , namely b2[r]
▶ matrixes E1 and E3

E1[e] is subject embedding for entity e −→ latent properties
E3[e], is object embedding entity e

▶ matrix E2, where E2[r] is relation embedding for relation r .

All embeddings E1[e], E2[r] and E3[e] are the same length.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 10 / 14

Knowledge Graphs and Triples

A knowledge graph is defined in term of triples of the form
(s, r , o), with subject s, relation (verb) r , and object o

The extension of matrix factorization to triples is polyadic
decomposition:

p̂((s, r , o)) = sigmoid(µ+ b1[s] + b2[r] + b3[o]∑
f

E1[s][f] ∗ E2[r][f] ∗ E3[o][f])

▶ a global bias µ
▶ two biases for each entity e: b1[e] used when e is in the first

position and b3[e], for when e in third position
▶ a bias for each relation r , namely b2[r]

▶ matrixes E1 and E3

E1[e] is subject embedding for entity e −→ latent properties
E3[e], is object embedding entity e

▶ matrix E2, where E2[r] is relation embedding for relation r .

All embeddings E1[e], E2[r] and E3[e] are the same length.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 10 / 14

Knowledge Graphs and Triples

A knowledge graph is defined in term of triples of the form
(s, r , o), with subject s, relation (verb) r , and object o

The extension of matrix factorization to triples is polyadic
decomposition:

p̂((s, r , o)) = sigmoid(µ+ b1[s] + b2[r] + b3[o]∑
f

E1[s][f] ∗ E2[r][f] ∗ E3[o][f])

▶ a global bias µ
▶ two biases for each entity e: b1[e] used when e is in the first

position and b3[e], for when e in third position
▶ a bias for each relation r , namely b2[r]
▶ matrixes E1 and E3

E1[e] is subject embedding for entity e

−→ latent properties
E3[e], is object embedding entity e

▶ matrix E2, where E2[r] is relation embedding for relation r .

All embeddings E1[e], E2[r] and E3[e] are the same length.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 10 / 14

Knowledge Graphs and Triples

A knowledge graph is defined in term of triples of the form
(s, r , o), with subject s, relation (verb) r , and object o

The extension of matrix factorization to triples is polyadic
decomposition:

p̂((s, r , o)) = sigmoid(µ+ b1[s] + b2[r] + b3[o]∑
f

E1[s][f] ∗ E2[r][f] ∗ E3[o][f])

▶ a global bias µ
▶ two biases for each entity e: b1[e] used when e is in the first

position and b3[e], for when e in third position
▶ a bias for each relation r , namely b2[r]
▶ matrixes E1 and E3

E1[e] is subject embedding for entity e −→ latent properties

E3[e], is object embedding entity e
▶ matrix E2, where E2[r] is relation embedding for relation r .

All embeddings E1[e], E2[r] and E3[e] are the same length.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 10 / 14

Knowledge Graphs and Triples

A knowledge graph is defined in term of triples of the form
(s, r , o), with subject s, relation (verb) r , and object o

The extension of matrix factorization to triples is polyadic
decomposition:

p̂((s, r , o)) = sigmoid(µ+ b1[s] + b2[r] + b3[o]∑
f

E1[s][f] ∗ E2[r][f] ∗ E3[o][f])

▶ a global bias µ
▶ two biases for each entity e: b1[e] used when e is in the first

position and b3[e], for when e in third position
▶ a bias for each relation r , namely b2[r]
▶ matrixes E1 and E3

E1[e] is subject embedding for entity e −→ latent properties
E3[e], is object embedding entity e

▶ matrix E2, where E2[r] is relation embedding for relation r .

All embeddings E1[e], E2[r] and E3[e] are the same length.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 10 / 14

Knowledge Graphs and Triples

A knowledge graph is defined in term of triples of the form
(s, r , o), with subject s, relation (verb) r , and object o

The extension of matrix factorization to triples is polyadic
decomposition:

p̂((s, r , o)) = sigmoid(µ+ b1[s] + b2[r] + b3[o]∑
f

E1[s][f] ∗ E2[r][f] ∗ E3[o][f])

▶ a global bias µ
▶ two biases for each entity e: b1[e] used when e is in the first

position and b3[e], for when e in third position
▶ a bias for each relation r , namely b2[r]
▶ matrixes E1 and E3

E1[e] is subject embedding for entity e −→ latent properties
E3[e], is object embedding entity e

▶ matrix E2, where E2[r] is relation embedding for relation r .

All embeddings E1[e], E2[r] and E3[e] are the same length.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 10 / 14

Knowledge Graphs and Triples

A knowledge graph is defined in term of triples of the form
(s, r , o), with subject s, relation (verb) r , and object o

The extension of matrix factorization to triples is polyadic
decomposition:

p̂((s, r , o)) = sigmoid(µ+ b1[s] + b2[r] + b3[o]∑
f

E1[s][f] ∗ E2[r][f] ∗ E3[o][f])

▶ a global bias µ
▶ two biases for each entity e: b1[e] used when e is in the first

position and b3[e], for when e in third position
▶ a bias for each relation r , namely b2[r]
▶ matrixes E1 and E3

E1[e] is subject embedding for entity e −→ latent properties
E3[e], is object embedding entity e

▶ matrix E2, where E2[r] is relation embedding for relation r .

All embeddings E1[e], E2[r] and E3[e] are the same length.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 10 / 14

Learning Polyadic Decomposition

To optimize log loss with L2 regularization:

same as previous algorithm with a different predictor and more
parameters to tune and regularize.

Requires negative examples, but knowledge graphs don’t have
negative examples.

Regularize µ or provide made-up negative examples.

But, not all relations have same number of negative examples,
eg. “married-to” vs “has-streamed”.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 11 / 14

Learning Polyadic Decomposition

To optimize log loss with L2 regularization:
same as previous algorithm with a different predictor and more
parameters to tune and regularize.

Requires negative examples, but knowledge graphs don’t have
negative examples.

Regularize µ or provide made-up negative examples.

But, not all relations have same number of negative examples,
eg. “married-to” vs “has-streamed”.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 11 / 14

Learning Polyadic Decomposition

To optimize log loss with L2 regularization:
same as previous algorithm with a different predictor and more
parameters to tune and regularize.

Requires negative examples, but

knowledge graphs don’t have
negative examples.

Regularize µ or provide made-up negative examples.

But, not all relations have same number of negative examples,
eg. “married-to” vs “has-streamed”.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 11 / 14

Learning Polyadic Decomposition

To optimize log loss with L2 regularization:
same as previous algorithm with a different predictor and more
parameters to tune and regularize.

Requires negative examples, but knowledge graphs don’t have
negative examples.

Regularize µ or provide made-up negative examples.

But, not all relations have same number of negative examples,
eg. “married-to” vs “has-streamed”.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 11 / 14

Learning Polyadic Decomposition

To optimize log loss with L2 regularization:
same as previous algorithm with a different predictor and more
parameters to tune and regularize.

Requires negative examples, but knowledge graphs don’t have
negative examples.

Regularize µ or provide made-up negative examples.

But, not all relations have same number of negative examples,
eg. “married-to” vs “has-streamed”.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 11 / 14

Learning Polyadic Decomposition

To optimize log loss with L2 regularization:
same as previous algorithm with a different predictor and more
parameters to tune and regularize.

Requires negative examples, but knowledge graphs don’t have
negative examples.

Regularize µ or provide made-up negative examples.

But, not all relations have same number of negative examples,
eg. “married-to” vs “has-streamed”.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 11 / 14

Improving Polyadic Decomposition

Suppose triples are of the form (u, likes,m) and
(m, directed by , d).

How can we represent “Sam likes movies directed by Bong
Joon-ho”?
The subject and object embeddings for movies are
independent of each other, so this cannot be represented or
learned.

Solution: also represent (m, likes−1, u) and
(d , directed by−1,m).

polyadic decomposition with inverses:

p̂(h, r , t) =
1

2
(p̂d(h, r , t) + p̂d(t, r−1, h))

where p̂d is the prediction from the polyadic decomposition.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 12 / 14

Improving Polyadic Decomposition

Suppose triples are of the form (u, likes,m) and
(m, directed by , d).
How can we represent “Sam likes movies directed by Bong
Joon-ho”?

The subject and object embeddings for movies are
independent of each other, so this cannot be represented or
learned.

Solution: also represent (m, likes−1, u) and
(d , directed by−1,m).

polyadic decomposition with inverses:

p̂(h, r , t) =
1

2
(p̂d(h, r , t) + p̂d(t, r−1, h))

where p̂d is the prediction from the polyadic decomposition.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 12 / 14

Improving Polyadic Decomposition

Suppose triples are of the form (u, likes,m) and
(m, directed by , d).
How can we represent “Sam likes movies directed by Bong
Joon-ho”?
The subject and object embeddings for movies are
independent of each other, so this cannot be represented or
learned.

Solution: also represent (m, likes−1, u) and
(d , directed by−1,m).

polyadic decomposition with inverses:

p̂(h, r , t) =
1

2
(p̂d(h, r , t) + p̂d(t, r−1, h))

where p̂d is the prediction from the polyadic decomposition.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 12 / 14

Improving Polyadic Decomposition

Suppose triples are of the form (u, likes,m) and
(m, directed by , d).
How can we represent “Sam likes movies directed by Bong
Joon-ho”?
The subject and object embeddings for movies are
independent of each other, so this cannot be represented or
learned.

Solution: also represent (m, likes−1, u) and
(d , directed by−1,m).

polyadic decomposition with inverses:

p̂(h, r , t) =
1

2
(p̂d(h, r , t) + p̂d(t, r−1, h))

where p̂d is the prediction from the polyadic decomposition.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 12 / 14

Improving Polyadic Decomposition

Suppose triples are of the form (u, likes,m) and
(m, directed by , d).
How can we represent “Sam likes movies directed by Bong
Joon-ho”?
The subject and object embeddings for movies are
independent of each other, so this cannot be represented or
learned.

Solution: also represent (m, likes−1, u) and
(d , directed by−1,m).

polyadic decomposition with inverses:

p̂(h, r , t) =
1

2
(p̂d(h, r , t) + p̂d(t, r−1, h))

where p̂d is the prediction from the polyadic decomposition.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 12 / 14

What does polyadic decomposition learn?

The polyadic decomposition is fully expressive: it can
represent (with error less than any ϵ), any relation.

Initially assume subject and object embeddings are
non-negative and bounded.

Each embedding position in the subject/object embedding
forms a soft clustering of entities.

For each embedding position, a relation with a high value
(≫ 0) in that position, the entities in the subject soft cluster
are related to the entities in the object soft cluster. (The
product is only high when all three are high).

A relation with a value ≪ 0 in a position forms exceptions.

For possibly negative subject and object embeddings:
product of even number of negative values is positive
product of odd number of negative values is negative

The addition lets these values be combined.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 13 / 14

What does polyadic decomposition learn?

The polyadic decomposition is fully expressive: it can
represent (with error less than any ϵ), any relation.

Initially assume subject and object embeddings are
non-negative and bounded.

Each embedding position in the subject/object embedding
forms a soft clustering of entities.

For each embedding position, a relation with a high value
(≫ 0) in that position, the entities in the subject soft cluster
are related to the entities in the object soft cluster. (The
product is only high when all three are high).

A relation with a value ≪ 0 in a position forms exceptions.

For possibly negative subject and object embeddings:
product of even number of negative values is positive
product of odd number of negative values is negative

The addition lets these values be combined.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 13 / 14

What does polyadic decomposition learn?

The polyadic decomposition is fully expressive: it can
represent (with error less than any ϵ), any relation.

Initially assume subject and object embeddings are
non-negative and bounded.

Each embedding position in the subject/object embedding
forms a soft clustering of entities.

For each embedding position, a relation with a high value
(≫ 0) in that position, the entities in the subject soft cluster
are related to the entities in the object soft cluster. (The
product is only high when all three are high).

A relation with a value ≪ 0 in a position forms exceptions.

For possibly negative subject and object embeddings:
product of even number of negative values is positive
product of odd number of negative values is negative

The addition lets these values be combined.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 13 / 14

What does polyadic decomposition learn?

The polyadic decomposition is fully expressive: it can
represent (with error less than any ϵ), any relation.

Initially assume subject and object embeddings are
non-negative and bounded.

Each embedding position in the subject/object embedding
forms a soft clustering of entities.

For each embedding position, a relation with a high value
(≫ 0) in that position, the entities in the subject soft cluster
are related to the entities in the object soft cluster. (The
product is only high when all three are high).

A relation with a value ≪ 0 in a position forms exceptions.

For possibly negative subject and object embeddings:
product of even number of negative values is positive
product of odd number of negative values is negative

The addition lets these values be combined.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 13 / 14

What does polyadic decomposition learn?

The polyadic decomposition is fully expressive: it can
represent (with error less than any ϵ), any relation.

Initially assume subject and object embeddings are
non-negative and bounded.

Each embedding position in the subject/object embedding
forms a soft clustering of entities.

For each embedding position, a relation with a high value
(≫ 0) in that position, the entities in the subject soft cluster
are related to the entities in the object soft cluster. (The
product is only high when all three are high).

A relation with a value ≪ 0 in a position forms exceptions.

For possibly negative subject and object embeddings:
product of even number of negative values is positive
product of odd number of negative values is negative

The addition lets these values be combined.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 13 / 14

What does polyadic decomposition learn?

The polyadic decomposition is fully expressive: it can
represent (with error less than any ϵ), any relation.

Initially assume subject and object embeddings are
non-negative and bounded.

Each embedding position in the subject/object embedding
forms a soft clustering of entities.

For each embedding position, a relation with a high value
(≫ 0) in that position, the entities in the subject soft cluster
are related to the entities in the object soft cluster. (The
product is only high when all three are high).

A relation with a value ≪ 0 in a position forms exceptions.

For possibly negative subject and object embeddings:
product of even number of negative values is positive
product of odd number of negative values is negative

The addition lets these values be combined.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 13 / 14

What does polyadic decomposition learn?

The polyadic decomposition makes predictions by clustering
entities in different ways.

It learns about each entity; embeddings are used to predict
interactions.

It does not learn general knowledge that can be applied to
other populations.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 14 / 14

What does polyadic decomposition learn?

The polyadic decomposition makes predictions by clustering
entities in different ways.

It learns about each entity; embeddings are used to predict
interactions.

It does not learn general knowledge that can be applied to
other populations.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.2 14 / 14

