
Agent Architectures

You don’t need to implement an intelligent agent as:

Perception Reasoning Action

as three independent modules, each feeding into the the next.

It’s too slow.

High-level strategic reasoning takes more time than the
reaction time needed to avoid obstacles.

The output of the perception depends on what you will
do with it.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 1

Hierarchical Control

A better architecture is a hierarchy of controllers.

Each controller sees the controllers below it as a
virtual body from which it gets percepts and sends
commands.

The lower-level controllers can
I run much faster, and react to the world more quickly
I deliver a simpler view of the world to the higher-level

controllers.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 2

Hierarchical Robotic System Architecture

......

Environment

Agent

previous
memories

high-level
percepts

low-level
percepts

high-level
commands

low-level
commands

next
memories

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 3

Functions implemented in a layer

memories

percepts commands

memories

percepts commands

memory function
remember(memory , percept, command)
command function
do(memory , percept, command)
percept function
higher percept(memory , percept, command)

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 4

Example: delivery robot

The robot has three actions: go straight, go right, go left.
(Its velocity doesn’t change).

It can be given a plan consisting of sequence of named
locations for the robot to go to in turn.

The robot must avoid obstacles.

It has a single whisker sensor pointing forward and to
the right. The robot can detect if the whisker hits an
object. The robot knows where it is.

The obstacles and locations can be moved dynamically.
Obstacles and new locations can be created dynamically.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 5

A Decomposition of the Delivery Robot

steer robot & report
obstacles & position

go to location &

plan

goal_pos

steer

arrived

robot_pos
compass

whisker_sensor

goal_pos
to_do

DELIVERY ROBOT
follow plan

avoid obstacles

environment

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 6

Middle Layer

Go to target
and avoid obstacles

robot
position

current
target-pos

steer

previous
target-pos

robot
orientation

whisker
sensor

steer

arrived

arrived

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 7

Middle Layer of the Delivery Robot

if whisker sensor = on

then steer = left

else if straight ahead(robot pos, robot dir , current goal pos)

then steer = straight

else if left of (robot position, robot dir , current goal pos)

then steer = left

else steer = right

arrived = distance(previous goal pos, robot pos)

< threshold

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 8

Top Layer of the Delivery Robot

The top layer is given a plan which is a sequence of
named locations.

The top layer tells the middle layer the goal position of
the current location.

It has to remember the current goal position and the
locations still to visit.

When the middle layer reports the robot has arrived, the
top layer takes the next location from the list of positions
to visit, and there is a new goal position.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 9

Top Layer

previous
to_do

previous
target_pos

follow plan

arrived

plan

target_pos

to_do

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 10

Code for the top layer

The top layer has two belief state variables:

to do is the list of all pending locations

goal pos is the current goal position

if arrived

then goal pos = coordinates(head(to do ′)).

if arrived

then to do = tail(to do ′).

Here to do ′ is the previous value for the to do feature.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 11

Simulation of the Robot

0

20

40

60

0 20 40 60 80 100

robot path
obstacle

goals

start

to do = [goto(o109), goto(storage), goto(o109),

goto(o103)]

arrived = true

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 12

What should be in an agent’s belief state?

An agent decides what to do based on its belief state and
what it observes.

A purely reactive agent doesn’t have a belief state.
A dead reckoning agent doesn’t perceive the world.
— neither work very well in complicated domains.

It is often useful for the agent’s belief state to be a model
of the world (itself and the environment).

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 13

