Agent Architectures

You don’t need to implement an intelligent agent as:

Perception * Reasoning * Action

as three independent modules, each feeding into the the next.

@ It's too slow.

@ High-level strategic reasoning takes more time than the
reaction time needed to avoid obstacles.

@ The output of the perception depends on what you will
do with it.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 1

Hierarchical Control

@ A better architecture is a hierarchy of controllers.

@ Each controller sees the controllers below it as a
virtual body from which it gets percepts and sends
commands.

@ The lower-level controllers can

» run much faster, and react to the world more quickly
» deliver a simpler view of the world to the higher-level
controllers.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 2

Hierarchical Robotic System Architecture

high-level “ ﬁ high-level

percepts commands
e ﬁ ﬁ grewoysI next_
.~ memories memories
Agent low-level H ﬁ low-level
! L commands
| Environment | percepts

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 3

Functions implemented in a layer

percepts “ “commands
memories memories

@ memory function
remember(memory, percept, command)
@ command function
do(memory, percept, command)
@ percept function
higher_percept(memory, percept, command)

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 4

Example: delivery robot

@ The robot has three actions: go straight, go right, go left.
(Its velocity doesn't change).

@ It can be given a plan consisting of sequence of named
locations for the robot to go to in turn.

@ The robot must avoid obstacles.

@ It has a single whisker sensor pointing forward and to

the right. The robot can detect if the whisker hits an
object. The robot knows where it is.

@ The obstacles and locations can be moved dynamically.
Obstacles and new locations can be created dynamically.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 5

A Decomposition of the Delivery Robot

|plan
DELIVERY ROBOT ¥ J
—> —> f0_do
follow plan 5 goal_pos
arrivedT) goal_pos

go to location &
avoid obstacles

A
robot_pos
_ compass steer
whisker_sensor L %

steer robot & report
obstacles & position

—

environment

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 6

Middle Layer

previous current
arrived target-pos |[target-pos

Go to target
and avoid obstacles

|

robot robot || whisker
position orientation || sensor teer

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 7

Middle Layer of the Delivery Robot

if whisker_sensor = on
then steer = left

else if straight_ahead(robot_pos, robot _dir, current_goal_pos)
then steer = straight

else if left_of (robot_position, robot_dir, current_goal _pos)
then steer = left

else steer = right

arrived = distance(previous_goal_pos, robot_pos)
< threshold

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 8

Top Layer of the Delivery Robot

@ The top layer is given a plan which is a sequence of
named locations.

@ The top layer tells the middle layer the goal position of
the current location.

@ It has to remember the current goal position and the
locations still to visit.

@ When the middle layer reports the robot has arrived, the
top layer takes the next location from the list of positions
to visit, and there is a new goal position.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 9

Top Layer

plan

previous | follow plan /
to_do

—Z

previous
target_pos

e

arri ved\ﬂ/

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 10

Code for the top layer

The top layer has two belief state variables:
@ to_do is the list of all pending locations

@ goal _pos is the current goal position

if arrived

then goal_pos = coordinates(head(to_do")).
if arrived

then to_do = tail(to_do’).

Here to_do’ is the previous value for the to_do feature.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 11

Simulation of the Robot

60 ; :
robot path e
obstacle e=
40¢ goals @

20+

Q.

| start I
0 20 40 60 80 100

to_do = [goto(0109), goto(storage), goto(0109),
goto(0103)]

arrived = true

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 12

What should be in an agent's belief state?

@ An agent decides what to do based on its belief state and
what it observes.

@ A purely reactive agent doesn’t have a belief state.
A dead reckoning agent doesn't perceive the world.
— neither work very well in complicated domains.

@ It is often useful for the agent's belief state to be a model
of the world (itself and the environment).

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 2.2, Page 13

