Learning Objectives

At the end of the class you should be able to:

- recognize and represent constraint satisfaction problems
- show how constraint satisfaction problems can be solved with search
- implement and trace arc-consistency of a constraint graph
- show how domain splitting can solve constraint problems

Posing a Constraint Satisfaction Problem

A CSP is characterized by

- A set of variables V_1, V_2, \ldots, V_n .
- Each variable V_i has an associated domain \mathbf{D}_{V_i} of possible values.
- There are hard constraints on various subsets of the variables which specify legal combinations of values for these variables.
- A solution to the CSP is an assignment of a value to each variable that satisfies all the constraints.

Example: scheduling activities

- Variables: A, B, C, D, E that represent the starting times of various activities.
- Domains: $\mathbf{D}_A = \{1, 2, 3, 4\}, \ \mathbf{D}_B = \{1, 2, 3, 4\}, \ \mathbf{D}_C = \{1, 2, 3, 4\}, \ \mathbf{D}_D = \{1, 2, 3, 4\}, \ \mathbf{D}_E = \{1, 2, 3, 4\}$
- Constraints:

$$(B \neq 3) \land (C \neq 2) \land (A \neq B) \land (B \neq C) \land$$
$$(C < D) \land (A = D) \land (E < A) \land (E < B) \land$$
$$(E < C) \land (E < D) \land (B \neq D).$$

Generate-and-Test Algorithm

- Generate the assignment space $\mathbf{D} = \mathbf{D}_{V_1} \times \mathbf{D}_{V_2} \times \ldots \times \mathbf{D}_{V_n}$. Test each assignment with the constraints.
- Example:

$$\begin{aligned} \mathbf{D} &= \mathbf{D}_{A} \times \mathbf{D}_{B} \times \mathbf{D}_{C} \times \mathbf{D}_{D} \times \mathbf{D}_{E} \\ &= \{1, 2, 3, 4\} \times \{1, 2, 3, 4\} \times \{1, 2, 3, 4\} \\ &\times \{1, 2, 3, 4\} \times \{1, 2, 3, 4\} \\ &= \{\langle 1, 1, 1, 1, 1 \rangle, \langle 1, 1, 1, 1, 2 \rangle, ..., \langle 4, 4, 4, 4, 4 \rangle\}. \end{aligned}$$

 How many assignments need to be tested for n variables each with domain size d?

Backtracking Algorithms

- Systematically explore D by instantiating the variables one at a time
- evaluate each constraint predicate as soon as all its variables are bound
- any partial assignment that doesn't satisfy the constraint can be pruned.

Example Assignment $A=1 \land B=1$ is inconsistent with constraint $A \neq B$ regardless of the value of the other variables.

CSP as Graph Searching

A CSP can be solved by graph-searching:

- A node is an assignment values to some of the variables.
- Suppose node N is the assignment $X_1 = v_1, \ldots, X_k = v_k$. Select a variable Y that isn't assigned in N. For each value $y_i \in dom(Y)$ $X_1 = v_1, \ldots, X_k = v_k, Y = y_i$ is a neighbour if it is consistent with the constraints.
- The start node is the empty assignment.
- A goal node is a total assignment that satisfies the constraints.

Consistency Algorithms

- Idea: prune the domains as much as possible before selecting values from them.
- A variable is domain consistent if no value of the domain of the node is ruled impossible by any of the constraints.
- Example: Is the scheduling example domain consistent?

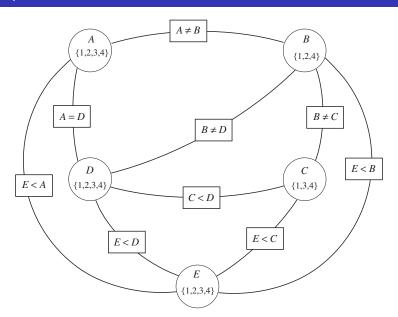
Consistency Algorithms

- Idea: prune the domains as much as possible before selecting values from them.
- A variable is domain consistent if no value of the domain of the node is ruled impossible by any of the constraints.
- **Example:** Is the scheduling example domain consistent? $\mathbf{D}_B = \{1, 2, 3, 4\}$ isn't domain consistent as B = 3 violates the constraint $B \neq 3$.

Constraint Network

- There is a oval-shaped node for each variable.
- There is a rectangular node for each constraint.
- There is a domain of values associated with each variable node.
- There is an arc from variable X to each constraint that involves X.

Example Constraint Network



Arc Consistency

- An arc $\langle X, r(X, \overline{Y}) \rangle$ is arc consistent if, for each value $x \in dom(X)$, there is some value $\overline{y} \in dom(\overline{Y})$ such that $r(x, \overline{y})$ is satisfied.
- A network is arc consistent if all its arcs are arc consistent.
- What if arc $\langle X, r(X, \overline{Y}) \rangle$ is *not* arc consistent?

Arc Consistency

- An arc $\langle X, r(X, \overline{Y}) \rangle$ is arc consistent if, for each value $x \in dom(X)$, there is some value $\overline{y} \in dom(\overline{Y})$ such that $r(x, \overline{y})$ is satisfied.
- A network is arc consistent if all its arcs are arc consistent.
- What if arc $\langle X, r(X, \overline{Y}) \rangle$ is *not* arc consistent? All values of X in dom(X) for which there is no corresponding value in $dom(\overline{Y})$ can be deleted from dom(X) to make the arc $\langle X, r(X, \overline{Y}) \rangle$ consistent.

Arc Consistency Algorithm

- The arcs can be considered in turn making each arc consistent.
- When an arc has been made arc consistent, does it ever need to be checked again?

Arc Consistency Algorithm

- The arcs can be considered in turn making each arc consistent.
- When an arc has been made arc consistent, does it ever need to be checked again?

 An arc $\langle X, r(X, \overline{Y}) \rangle$ needs to be revisited if the domain of one of the Y's is reduced.
- Three possible outcomes when all arcs are made arc consistent: (Is there a solution?)
 - ▶ One domain is empty ⇒
 - ▶ Each domain has a single value ⇒
 - ▶ Some domains have more than one value ⇒

Arc Consistency Algorithm

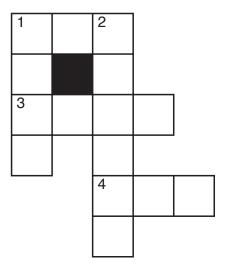
- The arcs can be considered in turn making each arc consistent.
- When an arc has been made arc consistent, does it ever need to be checked again?

 An arc $\langle X, r(X, \overline{Y}) \rangle$ needs to be revisited if the domain of one of the Y's is reduced.
- Three possible outcomes when all arcs are made arc consistent: (Is there a solution?)
 - ▶ One domain is empty ⇒ no solution
 - ► Each domain has a single value ⇒ unique solution
 - Some domains have more than one value ⇒ there may or may not be a solution

Finding solutions when AC finishes

- If some domains have more than one element ⇒ search
- Split a domain, then recursively solve each half.
- It is often best to split a domain in half.
- Do we need to restart from scratch?

Example: Crossword Puzzle



Words:

ant, big, bus, car, has book, buys, hold, lane, year beast, ginger, search, symbol, syntax

Hard and Soft Constraints

- Given a set of variables, assign a value to each variable that either
 - satisfies some set of constraints: satisfiability problems "hard constraints"
 - minimizes some cost function, where each assignment of values to variables has some cost: optimization problems — "soft constraints"
- Many problems are a mix of hard and soft constraints (called constrained optimization problems).