Clustering / Unsupervised Learning

@ The target features are not given in the training examples

@ The aim is to construct a natural classification that can
be used to predict features of the data.
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Clustering / Unsupervised Learning

@ The target features are not given in the training examples

@ The aim is to construct a natural classification that can
be used to predict features of the data.

@ The examples are partitioned in into clusters or classes.
Each class predicts feature values for the examples in the
class.

» In hard clustering each example is placed definitively in
a class.

» In soft clustering each example has a probability
distribution over its class.

@ Each clustering has a prediction error on the examples.
The best clustering is the one that minimizes the error.
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k-means algorithm

The k-means algorithm is used for hard clustering.
Inputs:

@ training examples
@ the number of classes, k
Outputs:
@ a prediction of a value for each feature for each class

@ an assignment of examples to classes
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k-means algorithm formalized

@ E is the set of all examples

@ the input features are Xi, ..., X,
e val(e, X;) is the value of feature X; for example e.
@ there is a class for each integer i € {1,..., k}.

The k-means algorithm outputs
@ a function class : E — {1,..., k}.
class(e) = i means e is in class .
@ a pval function where pval(i, X;) is the prediction for
each example in class i for feature X;.
The sum-of-squares error for class and pval is

Z Z (pval(class(e), X;) — val(e, X;))*.

ecE j=1

Aim: find class and pval that minimize sum-of-squares error.
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Minimizing the error

The sum-of-squares error for class and pval is

Z Z (pval(class(e), X;) — val(e, X;))* .

ecE j=1

@ Given class, the pval that minimizes the sum-of-squares
error is
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Minimizing the error

The sum-of-squares error for class and pval is

Z Z (pval(class(e), X;) — val(e, X;))* .

ecE j=1

@ Given class, the pval that minimizes the sum-of-squares
error is the mean value for that class.

@ Given pval, each example can be assigned to the class
that
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Minimizing the error

The sum-of-squares error for class and pval is

Z Z (pval(class(e), X;) — val(e, X;))* .

ecE j=1

@ Given class, the pval that minimizes the sum-of-squares
error is the mean value for that class.

@ Given pval, each example can be assigned to the class
that minimizes the error for that example.
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k-means algorithm

Initially, randomly assign the examples to the classes.
Repeat the following two steps:

@ For each class i and feature X;,

Ze:class(e):i Va/(e’ )<J)
[{e: class(e) = i}| ’

pval(i, X;) <

@ For each example e, assign e to the class / that minimizes

n

S (pvalli, X;) — val(e, X;))?.

j=1

until the second step does not change the assignment of any
example.
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Example Data

10 .
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Random Assignment to Classes

10

JF

Jr
+ 4
jL
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Assign Each Example to Closest Mean

10

Jr
+ 4
jL
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Ressign Each Example to Closest Mean

10

Jr
+ 4
jL
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Properties of k-means

@ An assignment of examples to classes is stable if running
both the M step and the E step does not change the
assignment.

@ This algorithm will eventually converge to a stable local
minimum.

@ Any permutation of the labels of a stable assignment is
also a stable assignment.

@ It is not guaranteed to converge to a global minimum.
@ It is sensitive to the relative scale of the dimensions.

@ Increasing k can always decrease error until k is the
number of different examples.
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EM Algorithm

@ Used for soft clustering — examples are probabilistically
in classes.

@ k-valued random variable C

Model Data o  Probabilities
X1 Xo X3 X4

Fof ot ot PUX|
P(Xs|
(X
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EM Algorithm

M-step
X; X X3 X4 C | count /—\
: : : : : : P(C)
- : POXIC
t f t t 1| 04 PEX; | C;
t f t t 2 0.1 POXGIC)
t f t t 3 0.5 P(X,IC)
E-step
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EM Algorithm Overview

@ Repeat the following two steps:

» E-step give the expected number of data points for the
unobserved variables based on the given probability
distribution.

» M-step infer the (maximum likelihood or maximum
aposteriori probability) probabilities from the data.

@ Start either with made-up data or made-up probabilities.

@ EM will converge to a local maxima.
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Augmented Data — E step

Suppose k = 3, and dom(C) = {1,2,3}.
P(C - 1|X1 - t,XQ - f,X3 - t,X4 - t) - 0407
P(C=2[Xi=t.X =fXs=t,X =t)=0.121
P(C == 3‘X1 = t,X2 = f,X3 = t,X4 = t) = 0.472:
AlXi, ..., Xy, C]

X, X, Xs Xa C| Count|

X]_ X2 X3 X4 Count : : : : :
: : : : : f t t 1| 407
t f t t 100 t f t 12.1
SRR : f ot t 3| 472

N
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X]_ X2 X3 X4 C | Count

—
t ot

12.1
f t t 3| 472

-
N
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X]_ X2 X3 X4 C | Count

—
t ot

f 12.1
f t t 3| 472

N

e c—y, Count(t)
>, Count(t)
Zt':C:V;/\Xk:Vj Count(t)
> tec—y; Count(t)
...perhaps including pseudo-counts

P(C:V,') =

P(Xe = v C=v) =
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